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A theory is defined to be relativistic if its Hamiltonian, total momenta, and boost’s
generators satisfy commutation relations of the Poincar´e group. Field theories with
usual local interactions are known to be relativistic. A simple example of a relativistic
nonlocal theory is found. However, it has divergences. Some conditions are obtained
which are necessary in order that a nonlocal theory be relativistic and divergenceless.

KEY WORDS: relativistic quantum fields; Poincar´e group; nonlocal interactions;
regularization of divergences.

1. INTRODUCTION

After Dirac, let us assume the following definition (Dirac, 1949; Leutwyler
and Stern, 1978). A theory is called relativistic if it has generators of translations
in time (HamiltonianH ), in space (total linear momentumEP), of space rotations
(total angular momentumEM), Lorentz boostsEK , and all these generators sat-
isfy the commutation relations of the Lie algebra of the Poincar´e group (CPG),
e.g., see Gasiorowicz (1966) and Weinberg (1995, chap. 2.4). In Quantum Field
Theory (QFT) the generators are expressed in terms of fields. The examples of rel-
ativistic QFT are theories of free fields and theories with local interactions. Here,
nonlocal QFT are considered which are required to be relativistic in the Dirac
sense. Only this property of nonlocal theories is regarded here, other problems are
not touched upon (e.g., relativistic causality); see, e.g., Efimov (1985) and Cornish
(1992).

For this purpose we use the model of interacting chargedψ and neutralϕ scalar
fields, see section 2. The model is a simple but representative example of QFT.

The following approach is accepted. Let there be given a theory of the cor-
responding free fields with generatorsH0, EP0, EM0, EK0 satisfying CPG. The gen-
erators are expressed in terms of the Schroedinger fieldsϕ(Ex), ψ(Ex) and their
conjugatesπ (Ex), τ (Ex) for which the usual commutation relations are postulated,
see Eq. (2.2). We look for such nonlocal interaction additions to these generators
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that CPG would be still satisfied. The usual form of the theory is assumed (which
Dirac called the “instant form”) where interaction terms are added only toH0

and EK0: H0→ H = H0+ V, EK0→ EK = EK0+ EN. The interactionsV and EN are
sought as functions of the Schroedinger fields. We need not to consider any nonlo-
cal interaction Lagrangian corresponding toV and EN (e.g., cf. the paper by Pauli
(1953) which starts with a nonlocal Lagrangian). Note that the conservation of
energy and momenta is ensured in view of the corresponding CPG containingH ,
e.g., [H, EP] = 0, etc.

It will be shown in section 4 that the problem posed above has solutions:
A simple example of relativistic nonlocal QFT will be given. However, it has
divergencies.

Let us add one more requirement to the nonlocal theory sought for: it must
be free of divergencies and have a local limit. Such a theory may be used as one
possible way for regularization of the corresponding local theory. Note that this
way does not need additional (compensative) fields.

The most akin to this work are papers by Kita (1966, 1968). The main differ-
ence is that Kita considered models which have no local limits, e.g., the Lee model.

Some necessary conditions for the existence of a relativistic nonlocal theory
are obtained here, see Conclusion. I suppose they are noteworthy enough to justify
their detailed derivations in section 4.

Remark that the paper deals only with the algebraic aspects of QFT: only
commutation relations for fields are needed to calculate CPG, we do not need to
introduce any space of quantum states in which fields would be operators. Here
fields are considered as elements of a noncommutative algebra with involution†
(which corresponds to the Hermitian adjoint in operator representations). Some-
times it is difficult to avoid using the word “operator,” but everywhere it means
“algebraic element.”

2. TRILINEAR INTERACTIONS OF CHARGED AND NEUTRAL
SCALAR FIELDS

The free partH0 =
∫

d3x H0(Ex) of the total Hamiltonian of the chargedψ and
neutralϕ scalar fields has the density (e.g., see Wentzel (1949, sections 6 and 8)

H0(Ex) = 1

2
[π2(Ex)+ E∇ϕ(Ex) · E∇ϕ(Ex)+ µ2ϕ2(Ex)]

+ [τ (Ex)τ †(Ex)+ E∇ψ†(Ex) · E∇ψ(Ex)+m2ψ†(Ex)ψ(Ex)]. (2.1)

The usual commutators of the fields are postulated, e.g., nonzero commuta-
tors are

[ϕ(Ex), π (Ey)] = i δ(Ex − Ey), [ψ(Ex), τ (Ey)] = i δ(Ex − Ey),

[ψ†(Ex), τ †(Ey)] = i δ(Ex − Ey). (2.2)
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Hereπ andτ are conjugated toϕ andψ respectively. Usually, one considers the
trilinear local interaction

Vl = g
∫

d3xϕ(Ex)ψ†(Ex)ψ(Ex). (2.3)

Its nonlocal generalization may be taken in the form

V =
∫

d3x
∫

d3y
∫

d3z9(Ex, Ey, Ez)ϕ(Ex)ψ†(Ey)ψ(Ez). (2.4)

It will be shown in section 4 that the theory with suchV can be relativistic
only if it is local:9(Ex, Ey, Ez) ∼ δ(Ex − Ey)δ(Ex − Ez). To find nonlocal relativistic the-
ories I shall consider additional interactions. The consideration can be decisively
simplified if one takes a restricted class of such interactions. Namely, we require
that the following conditions are satisfied: (a) interactions must be Hermitian, i.e.,
V = V†; (b) they must conserve the total chargeQ; they must be invariant under
(c) the charge conjugationC; and (d) time and space inversionsT and İ .

The requirement (b) means that interactions must commute withQ

Q = −i
∫

d3x[τ (Ex)ψ(Ex)− τ †(Ex)ψ†(Ex)],

see Wentzel (1949, chap. II, section 8). One can directly verify thatQ commutes
with the following bilinear combinations of charged fields

ψ†(Ey)ψ(Ez), τ (Ey)τ †(Ez), τ (Ey)ψ(Ez), ψ†(Ey)τ †(Ez), (2.5)

or their superpositions like
∫

d3y
∫

d3z A(Ey, Ez)ψ†(Ey)ψ(Ez) with anyc-number func-
tion A(Ey, Ez).

The charge conjugationC can be defined by the following equations:

CψC−1 = ηcψ
†; Cψ†C−1 = η∗cψ ;

Cτ †C−1 = ηcτ ; CτC−1 = η∗cτ †; (2.6)

CϕC−1 = ϕ; CπC−1 = π ;

|ηc| = 1; e.g., see Schweber (1961, Eq. (7.335)).
One can construct from (2.5) threeC-invariant combinations:ψ†(Ey)ψ(Ez)+

ψ(Ey)ψ†(Ez) or ∫
d3y

∫
d3z9s(Ey, Ez)ψ†(Ey)ψ(Ez) (2.7)

(here9s must be a symmetric function9s(Ey, Ez) = 9s(Ez, Ey)),∫
d3y

∫
d3zTs(Ey, Ez)τ (Ey)τ †(Ez), Ts(Ey, Ez) = Ts(Ez, Ey), (2.8)
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∫
d3y

∫
d3z A(Ey, Ez)[τ (Ey)ψ(Ez)+ ψ†(Ez)τ †(Ey)], (2.9)

A being any c-number function ofEy, Ez.
Multiplying (2.7)–(2.9) by neutral fieldsϕ or π , one may construct trilinear

combinations which conserve charge and areC-invariant. However, some of them
are not invariant under time inversionT :

Tϕ(Ex)T−1 = η0ϕ(Ex); Tπ (Ex)T−1 = −η0π (Ex);

Tψ(Ex)T−1 = ηψ(Ex); Tψ†(Ex)T−1 = η∗ψ†(Ex); (2.10)

Tτ (Ex)T−1 = −η∗τ (Ex); Tτ †(Ex)T−1 = −ητ †(Ex).

Here|η0| = |η| = 1 andT is antilinear so that, e.g.,T iϕT−1 = −η0iϕ; see Bjorken
and Drell (1965, chap. 15). We letη0 = 1 and retain only those trilinear interactions
which do not change the sign underT-inversion (omitting, e.g.,πψ†ψ).

Finally, we get the following most general trilinear interaction satisfying the
above requirements (a)–(d)

V =
∫

d3x
∫

d3y
∫

d3z{9(Ex, Ey, Ez)ϕ(Ex)ψ†(Ey)ψ(Ez)

+ T(Ex, Ey, Ez)ϕ(Ex)τ (Ey)τ †(Ez)+5(Ex, Ey, Ez)π (Ex)[τ (Ey)ψ(Ez)+ ψ†(Ez)τ †(Ey)]}.
(2.11)

Thec-number coefficients9 andT must be symmetric in the sense

9(Ex, Ey, Ez) = 9(Ex, Ez, Ey) T(Ex, Ey, Ez) = T(Ex, Ez, Ey), (2.12)

see (2.7) and (2.8);V is hermitian if9, T ,5 are real functions.
I do not dwell on invariance under space rotation. It holds if9, T ,5 are even

functions, e.g.,

9(Ex, Ey, Ez) = 9(−Ex,−Ez,−Ey). (2.13)

However, the property follows fromV invariance under space translations and
rotations, see the next section.

The interaction termsEN entering into the boost generatorsEK = EK0+ EN,
EK0 =

∫
d3xEx H0(Ex) (see Introduction) are taken in the form analogous to (2.11)

N j =
∫

d3x
∫

d3y
∫

d3z{9 jϕψ†ψ + T jϕττ †

+ 5 jπ [τψ + ψ†τ †]}, j = 1, 2, 3. (2.14)

Here the functions9 j , T j are symmetric in the sense (2.12).
In the “instant form” the generators of space translationsEP and rota-

tions EM are the same as in the free theory without interactions and, therefore,



P1: GCR

International Journal of Theoretical Physics [ijtp] pp518-ijtp-375266 June 12, 2002 21:23 Style file version May 30th, 2002

Relativistic Nonlocal Quantum Field Theory 1031

the CPG

[ Pi , Pj ] = 0; [Mi , Pj ] = i εi jk Pk; [Mi , M j ] = i εi jk Mk (2.15)

hold. In the remaining sections 3, 4, and 5, we consider CPG which includeH =
H0+ V and EK = EK0+ EN.

3. POINCARÉ COMMUTATORS LINEARLY DEPENDENT
ON H AND ~K

Let us consider the commutators ofH and EK with the (free) generators
EP = EP0 and EM = EM0

[H, Pi ] = 0; [H, Mi ] = 0; (3.1)

[Ni , P j ] = i δi j H ; [Mi , N j ] = i εi jk Nk, i , j , k = 1, 2, 3. (3.2)

Using H = H0+ V and EK = EK0+ EN and CPG for free generators

[H0, Pi ] = 0; [H0, Mi ] = 0; (3.3)[
Ni

0, P j
] = i δi j H0;

[
Mi , K j

0

] = i εi jk K k
0, (3.4)

one can rewrite (3.1) and (3.2) in terms ofV and EN:

[V, Pi ] = 0; [V, Mi ] = 0; (3.5)

[Ni , P j ] = i δi j V ; [Mi , N j ] = i εi jk Nk. (3.6)

Eqs. (3.5) mean thatV must be invariant under space translations and ro-
tations. Therefore, the functions9, T,5 in Eq. (2.11) must depend only upon
differences of their arguments, i.e., uponEx − Ey ≡ Er , Ex − Ez≡ Es and, moreover,
upon rotation invariantsr 2, s2, (Er · Es):

9(Ex, Ey, Ez) = 9(r 2, s2, (Er · Es)), Er = Ex − Ey, Es= Ex − Ez (3.7)

(analogously forT and5). As 9 and T are symmetric under the permutation
Ey↔ Ez, they are symmetric underr 2↔ s2.

The second Eq. (3.6) means thatN1, N2, N3 make up a three-vector. It follows
that the functions9 i , Ti ,5i in Eq. (2.14) must be components of three-vectors
constructed from their vector argumentsEx, Ey, Ez.

The first Eq. (3.6) needs a more thorough consideration. However, at first let
us make a decisive simplification. The purpose of this paper is restricted: we do
not strive to find all nonlocal versions of the model under consideration; we merely
want to give some examples of such versions. It turns out that the examples still
exist if5 in Eq. (2.11) andE5 in Eq. (2.14) are forced to be zero.
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Returning to the first Eq. (3.6) we calculate the commutator [Ni , P j ] letting
E5 = 0. We use the commutators

[ϕ(Ex), P j ] = −i ∂ϕ/∂xj , [ψ(Ex), P j ] = −i ∂ψ/∂xj

and analogous ones for other fieldsπ, ψ†, τ, τ † (see Eqs. (2.2) and expressions
for P j given in Wentzel (1949, chap. 2). Carrying in [Ni , P j ] − i δi j V derivations
from fields to the functions9 i , Ti (integration by parts), we obtain

[Ni , P j ] − i δi j V = i
∫

d3x
∫

d3y
∫

d3z

×
{[
∂9 i

∂xj
+ ∂9

i

∂yj
+ ∂9

i

∂zj
− δi j9

]
ϕ(Ex)ψ†(Ey)ψ(Ez)

+
[
∂Ti

∂xj
+ ∂Ti

∂yj
+ ∂Ti

∂zj
− δi j T

]
ϕ(Ex)τ (Ey)τ †(Ez)

}
= 0. (3.8)

A tedious general solution of Eq. (3.8) will not be presented because in the next
section we obtain simple expressions (4.7) and (4.8) following from other CPG.
They turn into zero the square brackets in Eq. (3.8) and, therefore, the first equation
(3.6) does hold.

4. POINCARÉ COMMUTATORS NONLINEAR IN H AND ~K :
TRILINEAR TERMS

Let us consider the remaining CPG which are nonlinear inH and EK
[K j , H ] = i P j , [K i , K j ] = −i εi jk Mk, i , j , k = 1, 2, 3; (4.1)

Using (4.1) and CPG for free partsH0 and EK0 of H and EK one obtaines the
following equations forV and EN

[N j , H0] + [K i
0, V

]+ [N j , V ] = 0; (4.2)[
K i

0, N j
]+ [Ni , K j

0

]+ [Ni , N j ] = 0. (4.3)

Remember thatV and EN are supposed to be of the trilinear form given by
Eqs. (2.11) and (2.14). Then, the first two terms in the l.h.s. of Eqs. (4.2) and (4.3)
are also trilinear, while the last ones are quadrilinear. Therefore, the sum of the
first two and the latter must vanish separately.

Indeed, consider multiple commutators of the fields with the l.h.s. of (4.2) of
(4.3) of the kind that will be used below (1), but fourfold ones, e.g., [π, [π, [ψ,
[τ, (4.2)]]]]. They turn into zero the first two terms of (4.2) and (4.3) and turn
the last ones into c-number. As the l.h.s. of (4.2) and (4.3) are zero, so are these
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c-numbers and, therefore, the last terms must vanish. Then, the sum of the first
two must also vanish separately.

1. Let us seek forV and EN which would cancel trilinear terms in l.h.s. of
Eq. (4.2)[

K j
0 , V

]− [H0, N j ] =
∫

d3x{xj [H0(Ex), V ] − [H0(Ex), N j ]}. (4.4)

This would mean the finding of some necessary conditions for the ful-
filment of (4.1). They may be insufficient ones because the quadrilinear
terms in (4.2) also must vanish.

The calculation of the commutators in (4.4) are straightforward
though tedious. The encounting commutators of the kind[

∂

∂xj
ϕ(Ex), π (Ex)

]
= i ∂δ(Ex − Ex′)/∂xj

follow from (2.2). Integrations by parts are used, e.g.,∫
d3x′

3∑
i=1

∂

∂x′i
ϕ(Ex′) ∂

∂x′i
δ(Ex′ − Ex) = −1xϕ(Ex),

1x ≡ ∂2/∂x2
1 + ∂2/∂x2

2 + ∂2/∂x2
3 (4.5)

as well as changes of variables which numerate (are arguments of) fields.
The result is[

K j
0 , V

]− [H0, N j ]

= − i
∫

d3x
∫

d3y
∫

d3z{[xj9 −9 j ]π (Ex)ψ̇
†
(Ey)ψ(Ez)

+ [yj9 −9 j + ∂T/∂zj + zj (1z−m2)T − (1z−m2)T j ]

×ϕ(Ex)(τ (Ey)ψ(Ez)+ ψ†(Ez)τ †(Ey))

+ [xj T − T j ]π (Ex)τ (Ey)τ †(Ez)}. (4.6)

It is evident that the r.h.s. of Eq. (4.6) vanishes ifc-number multiples
of πψ†ψ, ϕ(τψ + ψ†τ †) andπττ † vanish. Let us show that the inverse
is also true: if (4.6) vanishes then the square brackets in (4.6) vanish
separately. Indeed, the threefold commutator

[τ (Ez′), [τ †(Ey′), [ϕ(Ex′), r.h.s.(4.6)]]]

is equal to multiple ofπψ†ψ in (4.6), i.e. to the first square bracket in
(4.6) (it is symmetric underEy↔ Ez). Analogously [ψ†, [ψ, [π, (4.6)]]] is
equal to the multiple ofπττ †. Unlike these commutators the multiple
commutator [τ (Ez′), [ψ(Ey′), [π (Ex′), (4.6)]]] is equal to the second square
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bracket written in (4.6) whereas [ψ(Ez′), [τ (Ey′), [π (Ex′), (4.6)]]] is equal to
this bracket with interchangedEy andEz.

So using algebraic tools only, we get from Eq. (4.2) the following
equations for thec-number functions9,9 j , T, T j :

xj9(Ex, Ey, Ez)−9 j (Ex, Ey, Ez) = 0, (4.7)

xj T(Ex, Ey, Ez)− T j (Ex, Ey, Ez) = 0, (4.8)

yj9 −9 j + zj (1z−m2)T − (1z−m2)T j = 0, (4.9)

zj9 −9 j + yj (1y −m2)T − (1y −m2)T j = 0, (4.10)

These equations must hold for allEx, Ey, Ez, and j = 1, 2, 3.
2. In an analogous manner one can obtain equations for9,9 j , T, T j re-

sulting from vanishing of the trilinear terms in Eq. (4.3). One can show
that the terms vanish if Eqs. (4.7)–(4.10) hold. So in what follows we may
consider the latter ones only.

3. Substituting the solutions9 j = xj9 andT j = xj T of Eqs. (4.7) and (4.8)
into Eqs. (4.9) and (4.10), one obtains

−r j9 − ∂T/∂zj − sj (1z−m2)T = 0, (4.11)

−sj9 − ∂T/∂yj − r j (1y −m2)T = 0. (4.12)

Herer j ≡ xj − yj , sj ≡ xj − zj . Remind that9 andT are functions of
Er andEs, see section 3, and, therefore,

∂T/∂zj = −∂T/∂sj ; ∂T/∂yj = −∂T/∂r j ;

1zT = 1sT ; 1yT = 1r T.

Here1 is Laplacian, see Eq. (4.5).
Eqs. (4.11) and (4.12) are partial derivative equations of the second

order. In the momentum representation they turn into simpler equations
of the first order. To obtain the latter, multiply the l.h.s. of Eqs. (4.11) and
(4.12) by expi ( Ep · Er + Eq · Es) and integrate overEr , Es. Denoting

9̃( Ep, Eq) =
∫

d3r
∫

d3s9(Er , Es) expi ( Ep · Er + Eq · Es) (4.13)

and using the equation of the kind∫
d3r

∫
d3ssj (1s −m2)T(Er , Es) expi (Er · Er + Eq · Es)

= −i
∂

∂qj
[−q2−m2]T̃( Ep, Eq) = i [2qj T̃ + (q2+m2)∂T/∂qj ],

(4.14)
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one obtains

∂9̃/∂pj − qj T̃ − (q2+m2)∂ T̃/∂qj = 0, ∀ Ep, Eq, j = 1, 2, 3; (4.15)

∂9̃/∂qj − pj T̃ − (p2+m2)∂ T̃/∂pj = 0. (4.16)

It follows from Eq. (3.7) that9̃( Ep, Eq) = 9(p2, q2, Ep · Eq). Let us use
argumentsεp =

√
p2+m2 andεq =

√
q2+m2 instead ofp2 andq2 and

denotet = Ep · Eq. Then, Eqs. (4.15) turn into

Ep
(

1

εp
∂9̃/∂εp − ε2

q∂ T̃/∂t

)
+ Eq(∂9̃/∂t − T̃ + εp∂ T̃/∂εq) = 0.

(4.17)

Eqs. (4.16) turn into equations (4.17t) which are Eqs. (4.17) with trans-
posedEp andEq.

From Eqs. (4.17) we obtain two equations

1

εp
∂9̃/∂εp − ε2

q∂ T̃/∂t = 0; ∂9̃/∂t − T̃ − εq∂ T̃/∂εq = 0, (4.18)

using vector (outer) products at first byEp and then byEq ( Ep is supposed to
be not parallel toEq so thatEp× Eq 6= 0).

From transposed Eq. (4.17t) one obtains Eq. (4.18) whereεp andεq

are transposed

1

εq
∂9̃/∂εq − ε2

p∂ T̃/∂t = 0; ∂9̃/∂t − T̃ − εp∂ T̃/∂εp = 0. (4.19)

So we have reduced the starting Eqs. (4.7)–(4.10) to the system (4.18)
and (4.19) of partial derivative equations of the first order for the c-number
functions. Their general solution is obtained in Appendix A:

9̃( Ep, Eq) = − f1(εpεq − Ep · Eq)+ f2(εpεq + Ep · Eq), (4.20)

T̃( Ep, Eq) = 1

εpεq
[ f1(εpεq − Ep · Eq)+ f2(εpεq + Ep · Eq)]. (4.21)

Here f1 and f2 are arbitrary functions of their arguments. Let us discuss
some particular cases of the solution.

4. Let the interactionV be given by Eq. (2.4), i.e.,̃9 6= 0, T̃ = 0. The solu-
tion (4.21) can be zero at allεp, εq, (Ep · Eq) if

f1(ω − t)+ f2(ω + t) = 0, ω ≡ εp · εq, t ≡ Ep · Eq (4.22)

for all values ofω, t . This is a functional equation. Consider the set ofω, t
values which satisfyω − t = constant. For suchω, t values f1 in (4.11)
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is a constantC, while the argumentω + t of the function f2 does vary:
However, (4.22) states thatf2 is nevertheless equal to the constant−C.
Then, f1 is equal to+C at allω, t . So9̃ = − f1+ f2 = −2C is constant
and its Fourier prototype9 (see Eq. (4.13)) is proportional to the product
δ(Ex − Ey)δ(Ex − Ez)

9(Er , Es) ∼
∫

d3 p
∫

d3q2C exp(−i )( Ep · Er + Eq · Es) ∼ δ(Er )δ(Es). (4.23)

This result may be formulated as a “no-go theorem”: The relativistic
nonlocal theory does not exist if the interaction is of the kind

∫ ∫ ∫
9ϕψ†ψ

only, i.e., there is no admixture of other interactions.
The conclusion can be derived immediately from Eqs. (4.7)–(4.10):

if T = 0, then Eqs. (4.9) and (4.10) turn into equations (yj − xj )9 =
0 and (zj − xj )9 = 0. Their nonzero solution is9(Ex, Ey, Ez) ∼ δ(Ex − Ey)
δ(Ex − Ez).

Let us stress that in this particular case not only the trilinear parts
of (4.2) and (4.3) vanish but also the remaining quadrilinear ones
because

[ϕ(Ex)ψ†(Ey)ψ(Ez), ϕ(Ex′)ψ†(Ey′)ψ(Ez′)] = 0.

So the obtained particular solutionT̃ = 0, 9̃ = constant turns out to
be not only a necessary condition, but also a sufficient one in order that
the obtained local theory be relativistic.

5. Let9̃ = 0, T̃ 6= 0. The restrictioñ9 = − f1+ f2 = 0 leads tof1 = f2 =
C. ThenT̃ = 2C/εpεq. This solution can be obtained more simply from
Eqs. (4.18) and (4.19) wherẽ9 is put equal to zero. The corresponding
Fourier prototypeT(Ex, Ey, Ez) is not local. The interactions are

VT =
∫ ∫ ∫

Tϕττ †; N j
T =

∫ ∫ ∫
T jϕττ †; T j = xj T.

(4.24)

As in the previous case, the quadrilinear terms in Eqs. (4.2) and
(4.3) vanish. So we get a simple example of the relativistic QFT which is
nonlocal. Moreover, the relativistic local theory does not exist if interaction
terms are of the kind (4.24).

Let us show that in this case the theory has the same divergencies as
in the previous local case. For this purpose, use the well-known expan-
sions of ϕ, π ;ψ, τ †;ψ†, τ in the creation–destruction operatorsg,
g†; a, b†; a†, b, respectively (e.g., see Wentzel (1949, chap. 2). Then, the
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interactionV , given by Eq. (2.11) with5 = 0 can be represented as
follows:

V = (π )
3
2

∫
d3k

∫
d3 p

∫
d3qδ(Ek− Ep+ Eq)(ωkεpεq)−

1
2

× (gEk + g†−Ek)[V11( Ep, Eq)a†EpaEq + V12( Ep, Eq)a†Epb†−Eq

+ V21( Ep, Eq)b− EpaEq + V22( Ep, Eq)b− Epb†−Eq], (4.25)

V11( Ep, Eq) = V22( Ep, Eq) = 9̃( Ep,−Eq)+ εpεqT̃( Ep,−Eq)

= 2 f2(εpεq − Ep · Eq),
(4.26)

V12( Ep, Eq) = V21( Ep, Eq) = 9̃( Ep,−Eq)− εpεqT̃( Ep,−Eq)

= −2 f1(εpεq + Ep · Eq).

Equation (4.13) has been used. We see that in both the cases9̃ =
constant, and̃T = 0 and9̃ = 0, T̃ = constant/εpεq all coefficientsVmn

are constants.
Now let us consider the cases whenf1 and f2 are not constants.

6. We see immediately that the allowed solution9̃( Ep, Eq) cannot depend on
Ep only (or on Eq only): it must depend on bothEp and Eq by means of
the combinationsεpεq ± Ep · Eq. So doesT̃ . This means that theories with
nonlocal interactions of the kind∫ ∫

9(Ex − Ez)ϕ(Ex)ψ†(Ex)ψ(Ez)+
∫ ∫

T̃(Ex − Ez)ϕ(Ex)τ (Ex)τ †(Ez) (4.27)

cannot be relativistic.
7. It is possible to choose such particular solutionsf1 and f2 that divergencies

will be suppressed and the local interaction (2.3) will emerge in a limit.
Indeed, put for example

f1 = −C exp[−(εpεq − Ep · Eq)/M2],
(4.28)

f2 = C exp[−(εpεq + Ep · Eq)/M2].

HereM denotes a cutoff parameter. Then

9̃ = 2C exp(−εpεq/M2) cosh(Ep · Eq)/M2, (4.29)

εpεqT̃ = −2C exp(−εpεq/M2) sinh(Ep · Eq)/M2. (4.30)

When| Ep| → ∞ or |Eq| → ∞ we have a cutoff which is able to eliminate
any of the known divergencies. In the limitM →∞, 9̃ tends to a constant
while T̃ vanishes, i.e., the interaction

∫ ∫ ∫
9ϕψ†ψ tends to the local one

(2.3) while
∫ ∫ ∫

Tϕττ † tends to zero.
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However, the problem of canceling the quadrilinear parts of (4.2) and (4.3)
arises in this example. This will be outlined in the next section.

5. POINCARÉ COMMUTATORS NONLINEAR IN H AND ~K
BEYOND TRILINEAR TERMS

Let us calculate the commutator [N j , V ] entering into Eq. (4.2) usingV and
N j found in the previous section. We obtain

[N j , V ] = −i
∫

d3x
∫

d3x′
∫

d3y
∫

d3zFj (Ex, Ex′, Ey, Ez)ϕ(Ex)ϕ(Ex′)

× [τ (Ey)ψ(Ez)+ ψ†(Ez)τ †(Ey)], (5.1)

Fj (Ex, Ex′, Ey, Ez) =
∫

d3u(x′j − xj )[9(Ex, Eu, Ez)T(Ex′, Ey, Eu)

− 9(Ex′, Eu, Ez)T(Ex, Ey, Eu)]. (5.2)

The commutator [N j , V ] vanishes ifFj = 0; Fj does vanish evidently in the par-
ticular cases when eitherT or9 are zero. It can be shown that there are no other
cases whenFj = 0. Taking the omitted terms with5 and E5 into account does
not seem to help the trouble of nonvanishing [N j , V ] in any way. Following Kita
(1966, 1968), one may suggest the following schematic approach to provide the
fulfilment of the commutators (4.1).

Let trilinear interactionsV andN j be proportional to a coupling constantg.
In what follows denote them bygV3 andgN j

3 . Let us add quadrilinear interactions
∼g2 so that

V = gV3+ g2V4, N j = gN j
3 + g2N j

4 . (5.3)

Then, we obtain

[K j , H ] − i P j = g
{[

K j
0 , V3

]+ [N j
3 , H0

]}
+ g2

{[
K j

0 , V4
]+ [N j

4 , H0
]+ [N j

3 , V3
]}

+ g3
{[

N j
3 , V4

]+ [N j
4 , V3

]}+ g4
[
N j

4 , V4
]

(5.4)

(analogously for the second commutator in (4.1)). The interactionsg2V4 andg2N j
4

are to cancel the terms∼g2 in (5.4). For this purpose, the commutators [K j
0 , V4] +

[N j
4 , H0] in the r.h.s. of Eq. (5.4) must contain the termsϕϕ(τψ + ψ†τ †), see

Eq. (5.1). To provide this,V4 andN j
4 must contain

ϕϕψ†ψ, ϕϕττ †, πϕ(τψ† + ψ†τ †). (5.5)
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But then some excess undesired terms of the kindπϕψ†ψ, πϕττ † will appear in
[K j

0 , V4] + [N j
4 , H0]. For their compensation one should add to (5.5) the terms

ππψ†ψ andππττ †. As the result, all the terms∼g2 in the r.h.s. of Eq. (5.4) must
vanish. The terms of the orderg3 andg4 also must vanish. For their canceling one
ought to add in the r.h.s. of Eq. (5.3) pentalinear, hexalinear, etc., interactions.

Let us note one consequence of this approach. Suppose one wants to calculate
an effect of the orderg2 using the described nonlocal theory. Then, one must take
into account not only the trilinear interactiongV3 but also the interactiong2V4

constructed above.

6. CONCLUSION

The commutation relations of the Poincar´e group have been considered for
interacting neutralϕ and chargedψ fields. It has been proved that if their inter-
actions are of the kind

∫ ∫ ∫
9(Ex, Ey, Ez)ϕ(Ex)ψ†(Ey)ψ(Ez), then the theory can be

relativistic in the Dirac sense in the case of the local interaction only:9(Ex, Ey, Ez) ∼
δ(Ex − Ey)δ(Ex − Ez).

If the interaction is of the kind
∫ ∫ ∫

T(Ex, Ey, Ez)ϕ(Ex)τ (Ey)τ †(Ez), (τ being the
conjugate toψ), the theory is shown to be relativistic only ifT is a nonlocal
function of Ex, Ey, Ez. However, this case has the same divergencies as the previous
local one.

Some necessary conditions for the existence of the relativistic nonlocal theory
without divergencies has been obtained. First of all, interactions must be superpo-
sitions of terms including, in particular,9ϕψ†ψ andTϕττ †. The obtained condi-
tions do not specify the explicit forms of the corresponding formfactors9̃( Ep, Eq)
andT̃( Ep, Eq) or f1( Ep, Eq) and f2( Ep, Eq), see Eqs. (4.13), (4.20), and (4.21). However,
f1( Ep, Eq) and f2( Ep, Eq) are to depend only on specific combinations ofEp, Eq, namely
on I∓( Ep, Eq) =

√
p2+m2

√
q2+m2∓ ( Ep · Eq). The combinations are relativistic

invariants constructed from four-vectors (
√

p2+m2, Ep) and (
√

q2+m2, Eq) or
(
√

q2+m2,−Eq).
A specific example of cutting off formfactor is given [see subsect 7 in

section 4]. Its particular property is that the corresponding nonlocal theory turns
into the usual local one (with̃9 = const,T̃ = 0) when a cutoff parameter tends
to infinity. This example shows that this nonlocal theory can be used as a way of
relativistic regularization of the local one.

APPENDIX A: GENERAL SOLUTION OF EQS. (4.18) AND (4.19)

Let us consider the pair of second equations in Eqs. (4.18) and (4.19). Their
difference gives

εq∂ T̃/∂εq − εp∂ T̃/∂εp = 0. (A1)
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The corresponding system of ordinary differential equations (Forsyth, 1959) is
dεq/εq = −dεp/εp. It has the integralεpεq = constant. So the solutioñT(εp, εq, t)
of Eq. (A1) is an arbitrary function of the variablesεp · εq andt .

From the pair of first equations in Eqs. (4.18) and (4.19) one obtains

εp∂9̃/∂εp − εq∂9̃/∂εq = 0, (A2)

i.e., the same equation as (A1). Its general solution is an arbitrary function9̃(εp ·
εq, t) of εp · εq andt .

Let us denoteω ≡ εpεq and substitutẽT(ω, t) and9̃(ω, t) in the Eqs. (4.18)
and (4.19). Then, Eqs. (4.19) turn out to coincide with Eqs. (4.18) and we get a
system of two equations for̃9(ω, t) andT̃(ω, t):

∂9̃/∂ω − ω∂ T̃/∂t = 0, ∂9̃/∂t − T − ω∂ T̃/∂ω = 0. (A3)

Differentiate the first equation of the system overt and the second one over
ω. The difference of the resulting equations turns out to be the equation forT̃ only,
but of the second order

ω∂2T̃/∂t2 = 2∂ T̃/∂ω + ω∂2T̃/∂ω2. (A4)

Without loss of generality let us introduce a new unknown functionf instead
of T̃ : T̃ = ω−1 f . Then, Eq. (A4) turns into∂2 f/∂t2− ∂2 f/ω2 = 0. This simplest
hyperbolic equation is known to have the general solution of the form

f = f1(ω − t)+ f2(ω + t),

where f1 and f2 are independent arbitrary functions of their argumentsω − t and
ω + t , respectively. Substituting

T̃(εp, εq, t) = [ f1(ω − t)+ f2(ω + t)]/ω, ω = εpεq (A5)

into Eqs. (A3), we get

∂9̃/∂ω + f ′1 − f ′2 = 0, ∂9̃/∂t − ( f ′1 + f ′2) = 0. (A6)

Here f ′1,2(x) ≡ d f1,2/dx. Each of these two equations is an ordinary differential
equation. In the first one,t may be considered as a parameter and its general
solution is

9̃(ω, t) =
∫ ω

dω′[− f ′1(ω′ − t)+ f ′2(ω′ + t)] + C(t)

=
∫ ω

dω′[−∂ f1/ω
′ + ∂ f2/ω

′] + C(t)

= − f1(ω − t)+ f2(ω + t)+ C(t), (A7)

whereC(t) is an arbitrary function oft . Substituting (A7) into the second equation
(A6) one obtainsdC(t)/dt = 0, i.e.,C(t) does not depend ont , and is an arbitrary
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constant. So

9̃(εp, εq, t) = − f1(εpεq − t)+ f2(εpεq + t)+ C. (A8)

The constantC may be included into arbitrary functionsf1 and f2, and
thereforeC is omitted in Eqs. (4.20) and (4.21).
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