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Relativistic Nonlocal Quantum Field Theory
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A theory is defined to be relativistic if its Hamiltonian, total momenta, and boost's
generators satisfy commutation relations of the Poma@aoup. Field theories with
usual local interactions are known to be relativistic. A simple example of a relativistic
nonlocal theory is found. However, it has divergences. Some conditions are obtained
which are necessary in order that a nonlocal theory be relativistic and divergenceless.

KEY WORDS: relativistic quantum fields; Poincargroup; nonlocal interactions;
regularization of divergences.

1. INTRODUCTION

After Dirac, let us assume the following definition (Dirac, 1949; Leutwyler
and Stern, 1978). A theory is called relativistic if it has generators of translations
in time (HamiltonianH), in space (total linear momentuﬁl) of space rotations
(total angular momenturM) Lorentz boost, and all these generators sat-
isfy the commutation relations of the Lie algebra of the Poie@dup (CPG),

e.g., see Gasiorowicz (1966) and Weinberg (1995, chap. 2.4). In Quantum Field
Theory (QFT) the generators are expressed in terms of fields. The examples of rel-
ativistic QFT are theories of free fields and theories with local interactions. Here,
nonlocal QFT are considered which are required to be relativistic in the Dirac
sense. Only this property of nonlocal theories is regarded here, other problems are
not touched upon (e.g., relativistic causality); see, e.g., Efimov (1985) and Cornish
(1992).

For this purpose we use the model of interacting chaygedd neutrap scalar
fields, see section 2. The model is a simple but representative example of QFT.

The following approach is accepted. Let there be given a theory of the cor-
responding free fields with generatdtig, Po, Mo, Ko satisfying CPG. The gen-
erators are expressed in terms of the Schroedinger figfikls v (X) and their
conjugatesr (X), T(X) for which the usual commutation relations are postulated,
see Eq. (2.2). We look for such nonlocal interaction additions to these generators
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that CPG would be still satisfied. The usual form of the theory is assumed (which
Dirac called the “instant form”) where interaction terms are added onljgo
andKo: Hg — H = Hop + V, Ko — K = Kp + N. The interaction® andN are
sought as functions of the Schroedinger fields. We need not to consider any nonlo-
cal interaction Lagrangian corresponding\,tcandN (e.g., cf. the paper by Pauli
(1953) which starts with a nonlocal Lagrangian). Note that the conservation of
energy and momenta is ensured in view of the corresponding CPG contéining
e.g.,,H, P] =0, etc.

It will be shown in section 4 that the problem posed above has solutions:
A simple example of relativistic nonlocal QFT will be given. However, it has
divergencies.

Let us add one more requirement to the nonlocal theory sought for: it must
be free of divergencies and have a local limit. Such a theory may be used as one
possible way for regularization of the corresponding local theory. Note that this
way does not need additional (compensative) fields.

The most akin to this work are papers by Kita (1966, 1968). The main differ-
ence is that Kita considered models which have no local limits, e.g., the Lee model.

Some necessary conditions for the existence of a relativistic nonlocal theory
are obtained here, see Conclusion. | suppose they are noteworthy enough to justify
their detailed derivations in section 4.

Remark that the paper deals only with the algebraic aspects of QFT: only
commutation relations for fields are needed to calculate CPG, we do not need to
introduce any space of quantum states in which fields would be operators. Here
fields are considered as elements of a noncommutative algebra with invaolution
(which corresponds to the Hermitian adjoint in operator representations). Some-
times it is difficult to avoid using the word “operator,” but everywhere it means
“algebraic element.”

2. TRILINEAR INTERACTIONS OF CHARGED AND NEUTRAL
SCALAR FIELDS
The free party = [ d®x Ho(X) of the total Hamiltonian of the chargegdand
neutraly scalar fields has the density (e.g., see Wentzel (1949, sections 6 and 8)
3 Ty T (%) . T (% 2203
Ho(X) = S[7°(X) + Ve (X) - Ve(X) + 1 e(X)]
+[t®)T ) + VYR - VYR + mPy IRy E]. (2.1)

The usual commutators of the fields are postulated, e.g., nonzero commuta-
tors are

[p(), 7(M =16(X=9), W), z(M] =i8(X - ),
[y (), <" (D] = i5(% V). (2.2)
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Hererr andt are conjugated tgp andy respectively. Usually, one considers the
trilinear local interaction

Vi—g / xRy (%)Y (). (2.3)

Its nonlocal generalization may be taken in the form
V= [ox [y [ du s 2000 0ve. (2.4)

It will be shown in section 4 that the theory with sughcan be relativistic
only ifitis local: W(X, ¥, Z) ~ 8(X — ¥)§(X — Z). To find nonlocal relativistic the-
ories | shall consider additional interactions. The consideration can be decisively
simplified if one takes a restricted class of such interactions. Namely, we require
that the following conditions are satisfied: (a) interactions must be Hermitian, i.e.,
V = VT; (b) they must conserve the total chaiQethey must be invariant under
(c) the charge conjugatiaB; and (d) time and space inversiohisand| .

The requirement (b) means that interactions must commute@ith

Q=i / X[ (@)Y () — 7 @)y @]

see Wentzel (1949, chap. II, section 8). One can directly verifyGhabmmutes
with the following bilinear combinations of charged fields

VIO @), 3@, OvE), VO, (2.5)

or their superpositions likg d3y [ d3z Ay, 2)y T(¥)y(2) with anyc-number func-
tion A(Y, 2).
The charge conjugatio@ can be defined by the following equations:

CyCl=ny’, CylC=ny;
ctfc™ = per; cirCct= n:rT; (2.6)
CgDC_l =@, CrCt=n;

Inc| = 1; e.g., see Schweber (1961, Eq. (7.335)).
One can construct from (2.5) thr@invariant combinationsy f(y)y(2) +

V@@ or
f Py [ vy, 20 G @) 2.7)

(herews must be a symmetric functiodis(y, Z) = Ws(Z, V),

/ oy / PTG D@, o) = T ), 2.8)
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/ Py / B2, DGV @) + ¥ @) (2.9)

A being any c-number function gf, Z.

Multiplying (2.7)—(2.9) by neutral fieldg or 7, one may construct trilinear
combinations which conserve charge and@si@variant. However, some of them
are not invariant under time inversidn

Te(R)T ™ = nop(X); Tr(X)T = —nor(X);

TyT =y (%) Tyr T = n*y(X); (2.10)

Tr(X)T = —n*t(X); T XT!=-nr'(x).
Here|no| = || = 1andT isantilinear sothat, e.gl,ipT 1 = —noi ¢; see Bjorken
and Drell (1965, chap. 15). We leg = 1 and retain only those trilinear interactions
which do not change the sign undesinversion (omitting, e.gz v ).

Finally, we get the following most general trilinear interaction satisfying the
above requirements (a)—(d)

V= [dx [y [ @zui 5. 00000 0
+T(X ¥, De(X)r(NT(2) + T(X, ¥, e Q[ (Nv @ + v @ G-
(2.11)
Thec-number coefficient® andT must be symmetric in the sense
U, V,2)=¥(X,ZV) TX,V,2) =T, 7 V), (2.12)

see (2.7) and (2.8) is hermitian if¥, T, IT are real functions.
I do not dwell on invariance under space rotation. It hold,ifT, IT are even
functions, e.g.,

WX, ¥, 2) = W(=%, -3, —Y). (2.13)

However, the property follows fron¥ invariance under space translations and
rotations, see the next section. o B

The interaction termdN entering into the boost generatdfs= Ky + N,
Ko = [ d3xX Ho(X) (see Introduction) are taken in the form analogous to (2.11)

NI = /d3x/d3y/d3z{wi¢ww+TJ¢UT

+ My +yic’]), j=1,2,3 (2.14)

Here the functiona), T! are symmetric in the sense (2.12).
In the “instant form” the generators of space translati¢hsand rota-
tions M are the same as in the free theory without interactions and, therefore,
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the CPG
[P, P]=0;, [M,Pil=lieP; [M, Mj]=iejxM (2.15)

hold. In the remaining sections 3, 4, and 5, we consider CPG which in¢lugle
Ho + V andK = Ko+ N.

3. POINCARE COMMUTATORS LINEARLY DEPENDENT
ON H AND K

_Let us consider the commutators bf and K with the (free) generators
P = PyandM = My

[H,P']=0; [H,M]=0; (3.1)

[N, Pl =i8;H; [M', N]=iexN¥ i, j,k=1,273 (3.2)
UsingH = Hy + V andK = Ro + N and CPG for free generators
[Ho, P']=0; [Ho, M'1=0; (3.3)
[N), PI]=i&ijHo  [M, K] =iewKE, (3.9)
one can rewrite (3.1) and (3.2) in terms\ofandN:
[V,P1=0; [V,M]=0; (3.5)
[N, PI]=i&;V; [M', NI]=iejNX (3.6)

Egs. (3.5) mean tha¥ must be invariant under space translations and ro-
tations. Therefore, the functiong, T, IT in Eq. (2.11) must depend only upon
differences of their arguments, i.e., upgn-y =7, X — Z =S and, moreover,
upon rotation invariants?, s, (7 - 3):

VX, y,2)=w(r?s[F-8), FT=%X-Yy, S=Xx—-12 (3.7)
(analogously forT andIT). As ¥ andT are symmetric under the permutation
y < 7, they are symmetric undef < 2.

The second Eq. (3.6) means thé, N2, N2 make up athree-vector. Itfollows
that the functionsk!, T', IT" in Eq. (2.14) must be components of three-vectors
constructed from their vector argumenitsy, Z.

The first Eq. (3.6) needs a more thorough consideration. However, at first let
us make a decisive simplification. The purpose of this paper is restricted: we do
not strive to find all nonlocal versions of the model under consideration; we merely
want to give some examples of such versions. It turns out that the examples still
exist if IT in Eq. (2.11) andT in Eq. (2.14) are forced to be zero.
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_Returning to the first Eq. (3.6) we calculate the commutalty P'] letting
IT = 0. We use the commutators

[p(X), P1] = —idg/ox;,  [¥(X), P/l =—idy/ox

and analogous ones for other fieldsy T, 7, T (see Egs. (2.2) and expressions
for PJ given in Wentzel (1949, chap. 2). Carrying N'[, P'] —i4;;V derivations
from fields to the function®', T' (integration by parts), we obtain

[N', PI]—ig;V :i/d3x/d3y/d3z

v w Y
9% %% L% 5wl ot (WG
S R T e LA 24C

oT'  9T'  oT!

— 4+ —+— =58 T|eX)r(Y)r (@} =0. (3.8

Syt g T[] -0 @e)
A tedious general solution of Eq. (3.8) will not be presented because in the next
section we obtain simple expressions (4.7) and (4.8) following from other CPG.
They turn into zero the square brackets in Eg. (3.8) and, therefore, the first equation
(3.6) does hold.

4. POINCARE COMMUTATORS NONLINEAR IN H AND K:
TRILINEAR TERMS

Let us consider the remaining CPG which are nonlinead iand K
[KI,H]=iPJ, [K', KI]=—iguM* i, j,k=1,23; 4.1)

Using (4.1) and CPG for free part and Ko of H andK one obtaines the
following equations fol andN

[NY, Ho] + [K§, V] +IN!, V] =0; (4.2)
Ki, NIT+ [N, KT+ [N, NIT=0. (4.3)
[Ko, N'T+ [N, Ko ]

Remember tha¥ and N are supposed to be of the trilinear form given by
Egs. (2.11) and (2.14). Then, the first two terms in the |.h.s. of Egs. (4.2) and (4.3)
are also trilinear, while the last ones are quadrilinear. Therefore, the sum of the
first two and the latter must vanish separately.

Indeed, consider multiple commutators of the fields with the |.h.s. of (4.2) of
(4.3) of the kind that will be used below (1), but fourfold ones, e®, [f, [V,

[z, (4.2)]]]]. They turn into zero the first two terms of (4.2) and (4.3) and turn
the last ones into c-number. As the L.h.s. of (4.2) and (4.3) are zero, so are these
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c-numbers and, therefore, the last terms must vanish. Then, the sum of the first
two must also vanish separately.

1. Let us seek fov and N which would cancel trilinear terms in I.h.s. of
Eq. (4.2)

[KJ, V] —[Ho, NI :/d3x{x,-[Ho(7(),V]—[HO(Y(), NITY.  (4.4)

This would mean the finding of some necessary conditions for the ful-
filment of (4.1). They may be insufficient ones because the quadrilinear
terms in (4.2) also must vanish.

The calculation of the commutators in (4.4) are straightforward
though tedious. The encounting commutators of the kind

[iq)(fo, n(f()] — 198(% — X)/0x;

3Xj
follow from (2.2). Integrations by parts are used, e.g.,

3

ad ad

A3 ) — X (X' — X) = —Axp(X),

[ %D G 0 = ~s0
Ax = 0%/0x2 + 8%/9x2 4 9%/9x3 (4.5)

as well as changes of variables which numerate (are arguments of) fields.

The result is

[K3, V] = [Ho, N']
——i [ & [ &y [ dalixw - w1 G @
+lyjW — W +8T/0z) 4 zj(A, — mA)T — (A, — m?)T]
x (XN (@) + v (D))
+ % T =Tz @) @) (4.6)
Itis evident that the r.h.s. of Eq. (4.6) vanishes-ifiumber multiples
of 7y Ty, p(ty + ¥ich) andxz T vanish. Let us show that the inverse

is also true: if (4.6) vanishes then the square brackets in (4.6) vanish
separately. Indeed, the threefold commutator

[t@), [t7(¥), [e(X), r-h.s.(4.6)]l]

is equal to multiple ofry Ty in (4.6), i.e. to the first square bracket in
(4.6) (it is symmetric undey < Z). Analogously |f, [v, [, (4.6)]] is

equal to the multiple ofrrzf. Unlike these commutators the multiple
commutator §(Z), [w(¥), [7(X), (4.6)]]] is equal to the second square
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bracket written in (4.6) whereag/[Z), [<(Y), [ (X)), (4.6)]]] is equal to
this bracket with interchangegand?z.

So using algebraic tools only, we get from Eq. (4.2) the following
equations for the-number functionsy, Wi, T, Ti:

XjW(%,V,2) - ¥i(Yy,2=0, 4.7
X T, ¥,2)-TI(X,V,2) =0, (4.8)
V¥ 4 2(A - AT — (A~ AT =0, (49)

ZjWw — ¥ 4y (Ay —mA)T — (Ay — m?)T! =0, (4.10)

These equations must hold for &@lly, Z, andj = 1, 2, 3.

. In an analogous manner one can obtain equationfar!, T, T/ re-

sulting from vanishing of the trilinear terms in Eq. (4.3). One can show
that the terms vanish if Egs. (4.7)—(4.10) hold. So in what follows we may
consider the latter ones only.

. Substituting the solutiong! = x; ¥ andT! = x; T of Egs. (4.7) and (4.8)

into Egs. (4.9) and (4.10), one obtains
—IjW —38T/dz; — (A, — mA)T =0, (4.12)
—§W — dT/dy; —rj(Ay —m)T = 0. (4.12)

Herer; = x; —yj, S; = Xj — z;. Remind that¥ andT are functions of
I ands, see section 3, and, therefore,

0T /dz; = —aT/ds;;  0T/dy; = —aT/or;;
AzT = AsT, AyT == ArT.

HereA is Laplacian, see Eq. (4.5).

Egs. (4.11) and (4.12) are partial derivative equations of the second
order. In the momentum representation they turn into simpler equations
of the first order. To obtain the latter, multiply the |.h.s. of Egs. (4.11) and
(4.12) by exp(p - T + G - 8) and integrate ovait, S. Denoting

U(p, §) = /d3r /d3S\If(F,§) expi(p-T+4-3) (4.13)
and using the equation of the kind

/d3r /de‘sq(As— m?)T(F,S) expi(F -7 +§-3)

9 2o s
= i 5o [0 = mIT(R, &) = il20, T + (o + m)3T /00 ),
J

(4.14)
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one obtains

W /op; —q;T — (@2 +m?aT/og; =0, VP, G, j=1,2,3; (4.15)

d¥/aq; — p; T — (p?+ m?)aT/ap; = 0. (4.16)

It follows from Eq. (3.7) that¥(p, §) = ¥(p?, g2 P - §). Let us use

arguments, = ,/p? + m? andeq = /g2 + m? instead ofp? andg? and
denotet = p- . Then, Egs. (4.15) turn into

(1. . . 8 .
p (6—pa\p/aep - egaT/at) +GOF /0t — T +€p0T /0eq) = 0.

(4.17)

Egs. (4.16) turn into equations (4.17t) which are Egs. (4.17) with trans-
posedp andg.
From Egs. (4.17) we obtain two equations

1 - ~ ~ - ~
=90 /0e, — 20T /ot =0; 00/t — T — qdT/9eq =0, (4.18)
€p

using vector (outer) products at first fiyand then byg (P is supposed to
be not parallel taj so thatp x g # 0).

From transposed Eqg. (4.17t) one obtains Eq. (4.18) wheede,
are transposed

1 - N . - .
—0W/deq — 50T /9t =0; W/t — T — ;0T /dep =0. (4.19)
€q

So we have reduced the starting Egs. (4.7)—(4.10) to the system (4.18)
and (4.19) of partial derivative equations of the first order for the c-number
functions. Their general solution is obtained in Appendix A:

(P, ) = — filepeq — P-G) + f2(epeq + P-d),  (4.20)

.. 1 .o L
T(p,0) = :[fl(fpéq —P-0)+ falepeg + P- Q). (4.21)
p€q
Here f; and f, are arbitrary functions of their arguments. Let us discuss
some particular cases of the solution. B B
4. Letthe interactioV be given by Eq. (2.4), i.el¥ # 0, T = 0. The solu-
tion (4.21) can be zero at al}, €, (p - G) if

filw—1t)+ falw+1) =0, w=¢€p-€, t=p-q (4.22)

for all values ofw, t. This is a functional equation. Consider the sebpf
values which satisfyw —t = constant. For such, t valuesf; in (4.11)
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is a constanC, while the argumend + t of the function f, does vary:
However, (4.22) states thdp is nevertheless equal to the constai@.
Then, f; is equal to+-C at allw, t. SoV¥ = —f; + f, = —2C is constant
and its Fourier prototyp# (see Eq. (4.13)) is proportional to the product
(X —Y)§(X —2)

U(F,3) ~ /d3p/d3q2c expi)(P-T+G-3) ~8(F)5(3). (4.23)

This result may be formulated as a “no-go theorem”: The relativistic
nonlocal theory does notexistifthe interaction is of the kinkl | Wy Ty
only, i.e., there is no admixture of other interactions.

The conclusion can be derived immediately from Egs. (4.7)—(4.10):
if T =0, then Egs. (4.9) and (4.10) turn into equatiogs £ x;)¥ =
0 and ¢; — x;)¥ = 0. Their nonzero solution i¥ (X, ¥, 2) ~ §(X — Y)
(X — 2).

Let us stress that in this particular case not only the trilinear parts
of (4.2) and (4.3) vanish but also the remaining quadrilinear ones
because

[e()Y @)Y @), (X)W ()Y (@) = 0.
So the obtained particular solutidh= 0, ¥ = constant turns out to

be not only a necessary condition, but also a sufficient one in order that
the obtained local theory be relativistic.

. Let¥ =0, T # 0. Therestrictiont = — f, + f, = Oleadstof, = f, =

C. ThenT = 2C/epeq. This solution can be obtained more simply from
Egs. (4.18) and (4.19) where is put equal to zero. The corresponding
Fourier prototypel (X, V, Z) is not local. The interactions are

VT=//fT¢uT; N}:///Timrf; TI=xT.

(4.24)

As in the previous case, the quadrilinear terms in Egs. (4.2) and
(4.3) vanish. So we get a simple example of the relativistic QFT which is
nonlocal. Moreover, the relativistic local theory does not exist if interaction
terms are of the kind (4.24).

Let us show that in this case the theory has the same divergencies as
in the previous local case. For this purpose, use the well-known expan-
sions of ¢, 7;y, tT;¢ T, in the creation—destruction operatogs
g';a, bf;af, b, respectively (e.g., see Wentzel (1949, chap. 2). Then, the
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interactionV, given by Eq. (2.11) withlT = 0 can be represented as
follows:

V = (77)% /d3k/d3pfd3q8(lz— f)+a)(a)kepeq)’%
x (g + 9" DIVaa(p, G)alag + Vao(p, G)alb’

+ Va1, G)b_pag + Voo, G)b_gb! 4], (4.25)

Vi1(P, §) = Vaa(P, G) = ¥(P, —G) + €peq T (P, —0)
= 2fy(epeq — P - 0),

Vio(P, @) = Vas(B, @) = ¥ (P, —0) — €peq T (P, —0)
= —2fi(epeq + P - 0).

Equation (4.13) has been used. We see that in both the dases
constant, and = 0 and¥ = 0, T = constantepeq all coefficientsVimn
are constants.

Now let us consider the cases whé&nand f, are not constants.

6. We see immediately that the allowed solutib@p, §) cannot depend on
P only (or ong only): it must depend on botlp andg by means of
the combinations,eq + P - §. So doesT . This means that theories with
nonlocal interactions of the kind

/ / W — D@y QY @) + / / TE - DR ®)i@)  (4.27)

cannot be relativistic.

7. ltis possible to choose such particular solutibnand f, that divergencies
will be suppressed and the local interaction (2.3) will emerge in a limit.
Indeed, put for example

fi = —C exp[—(epeq — P - 6)/M?],
f, = C exp[—(epeq + P - G)/M?.
HereM denotes a cutoff parameter. Then
U = 2C exp(—epeq/M?) cosh@ - §)/M?, (4.29)
epeqT = —2C exp(—epeq/M?) sinh(@ - §)/M2. (4.30)

(4.26)

(4.28)

When|p| — oo or|g| — oo we have a cutoff which is able to eliminate
any of the known divergencies. In the lin\t — oo, ¥ tends to a constant
while T vanishes, i.e., the interactigh/ [ Wey Ty tends to the local one
(2.3)while [ [ [ Tyt tends to zero.
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However, the problem of canceling the quadrilinear parts of (4.2) and (4.3)
arises in this example. This will be outlined in the next section.

5. POINCARE COMMUTATORS NONLINEAR IN  H AND K
BEYOND TRILINEAR TERMS

~ Letus calculate the commutatdd [, V] entering into Eq. (4.2) usiny and
N’ found in the previous section. We obtain

NV V] = i / X / oy f Py / &®2F, (%, %, 7 De(F)e(X)

x [ty @+ v @ O (5.1)
Fi(%,X,V,2) = /d?’u(xj —x)[¥(X, G, 2T, , O)
— W, 0, )T ¥, 0). (5.2)

The commutatorjl!, V] vanishes iff; = 0; F; does vanish evidently in the par-
ticular cases when eith@r or W are zero. It can be shown that there are no other
cases wherF; = 0. Taking the omitted terms withl and 1 into account does
not seem to help the trouble of nonvanishimy [ V] in any way. Following Kita
(1966, 1968), one may suggest the following schematic approach to provide the
fulfilment of the commutators (4.1).

Let trilinear interactions/ andN’ be proportional to a coupling constamnt
In what follows denote them hy\; andg Ng{. Let us add quadrilinear interactions
~g? so that

V=gVs+0g°Vs,  Ni=gN +g¢N,. (5.3)
Then, we obtain
[KI, H] =P = g{[K{, Vs] + [NJ, Ho]}
+ Q[KE. Val + [NL Ho] + [N, vs])
+ 0%{[Nd, Va] + [NJ, 5]} + g*[NJ, Va]  (5.4)

(analogously for the second commutator in (4.1)). The interactidvigandg? Nj
are to cancel the termsg? in (5.4). For this purpose, the commutatdl@g[ Vq] +
[N}, Ho] in the r.h.s. of Eq. (5.4) must contain the termg(zy + ¥ i), see
Eq. (5.1). To provide thisy, and Nj must contain

oovy, ppttl, me(ryt +yich). (5.5)
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But then some excess undesired terms of the kiag T/, rpttT will appear in
[K!, V4] + [N}, Ho]. For their compensation one should add to (5.5) the terms
arny Ty andrrret. As the result, all the termsg? in the r.h.s. of Eq. (5.4) must
vanish. The terms of the ordg? andg* also must vanish. For their canceling one
ought to add in the r.h.s. of Eq. (5.3) pentalinear, hexalinear, etc., interactions.

Let us note one consequence of this approach. Suppose one wants to calculate
an effect of the ordeg? using the described nonlocal theory. Then, one must take
into account not only the trilinear interactigyVs but also the interactiog?V,
constructed above.

6. CONCLUSION

The commutation relations of the Poineagfoup have been considered for
interacting neutrap and charged/ fields. It has been proved that if their inter-
actions are of the kind" [ [ W(X, ¥, 2)¢(X)¥ (¥)¥(2), then the theory can be
relativistic in the Dirac sense in the case of the local interaction anfy; y, ) ~
S(X —Y)5(X — 2).

If the interaction is of the kind' [ [ T(X, ¥, 2)¢(X)t(¥)r(2), (r being the
conjugate toy), the theory is shown to be relativistic only Tf is a nonlocal
function ofX, y, Z. However, this case has the same divergencies as the previous
local one.

Some necessary conditions for the existence of the relativistic nonlocal theory
without divergencies has been obtained. First of all, interactions must be superpo-
sitions of terms including, in particulagey Ty andT ez cf. The obtained condi-
tions do not specify the explicit forms of the corresponding formfacie(, G)
andT (P, §) or f1(p, §) and f2(P, ), see Egs. (4.13), (4.20), and (4.21). However,
f1(p, §) and f2(P, G) are to depend only on specific combinationgpfj, namely
on (P, §) = v/ p? + m%/q2 + m? 5 (p - G). The combinations are relativistic
invariants constructed from four-vectorg/ p2 + m?, p) and (/g2 + m?, G) or
(va? + m?, —q).

A specific example of cutting off formfactor is given [see subsect 7 in
section 4]. Its particular property is that the corresponding nonlocal theory turns
into the usual local one (witll = const,T = 0) when a cutoff parameter tends
to infinity. This example shows that this nonlocal theory can be used as a way of
relativistic regularization of the local one.

APPENDIX A: GENERAL SOLUTION OF EQS. (4.18) AND (4.19)

Let us consider the pair of second equations in Egs. (4.18) and (4.19). Their
difference gives

€qdT /deq — €pdT /dep = 0. (A1)
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The corresponding system of ordinary differential equations (Forsyth, 1959) is
deq/eq = —dep/ep. Ithastheintegralpeq = constant. Sothe solutidi(ep, €q, t)
of Eq. (A1) is an arbitrary function of the variables - €5 andt.

From the pair of first equations in Eqgs. (4.18) and (4.19) one obtains

i.e., the same equation as (Al). Its general solution is an arbitrary funfzﬁqn-
€q, 1) Of €p - €q andt.
Let us denotey = epeq and substitutd (), t) and¥(w, t) in the Egs. (4.18)
and (4.19). Then, Egs. (4.19) turn out to coincide with Eqgs. (4.18) and we get a
system of two equations fo¥ (w, t) and T (w, t):

/0w — wdT /ot =0, 9¥/ot—T —wdT /0w = 0. (A3)

Differentiate the first equation of the system ovend the second one over
w. The difference of the resulting equations turns out to be the equatidndoly,
but of the second order
0d*T /0t? = 20T /dw + wd?T /3w?. (A4)

_ Without loss of generality let us introduce a new unknown funcfionstead
of T : T = w™*f.Then, Eq. (A4)turnsintd? f /at?> — 32 f /w? = 0. This simplest
hyperbolic equation is known to have the general solution of the form

f=filw—1)+ fo(w+1),

where f; and f, are independent arbitrary functions of their argumentst and
o + t, respectively. Substituting

T(ep eq,t) = [fi(w —t) + fa(w + )] /o, © = €peq (A5)
into Egs. (A3), we get
oW /dw + f{ — f,=0, ¥/t — (f] + f;) =0. (AB)

Here f] ,(x) = df; »/dx. Each of these two equations is an ordinary differential
equation. In the first ond, may be considered as a parameter and its general
solution is

U(w,t) = /w do'[— f{(0' —t) + fi(@ +1)] + C(t)

= /w do'[-0f /0" + 3fs/0'] + C(t)

= —fi(w — t) + fo(w +t) + C(t), (A7)

whereC(t) is an arbitrary function of. Substituting (A7) into the second equation
(AB6) one obtainslC(t)/dt = 0, i.e.,C(t) does not depend dnand is an arbitrary
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constant. So
U(ep, €q, t) = — fa(epeq — t) + falepeq +t) + C. (A8)

The constanC may be included into arbitrary function§ and f,, and
thereforeC is omitted in Eqgs. (4.20) and (4.21).
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